
ROBERTO COLELLA 57 

that all the structure factors, recalculated for the (B) 
species and different Miller indices, are identical, in 
magnitudes and phases, to those calculated when it 
was thought the crystal was of type (A). Repeating 
the computations for an (A) crystal with the same 
Miller indices (330 for the main reflection, 626 and 
136 for the simultaneous reflections) will give differ- 
ent results, as in the previous case, with a peak 
intensity equal t o  14. However, the peak intensities 
found now are identical to those found earlier (11 = 
13, I2=/4), since all the structure factors are 
rigorously identical when switching from one space 
group to another and changing the Miller indices 
accordingly. 

It should be stressed that anomalous dispersion 
does not help here, as in the previous case. Our 
calculations were performed with large unrealistic 
values for the imaginary components of the 
scattering factors and the equality expressed in (1) 
was always found to be rigorously true, to within 
computer accuracy. 

The situation is quite different in higl~-energy elec- 
tron diffraction (E=  30-50 keV or higher). In this 
case, inelastic scattering (plasmon scattering, single- 
electron excitations, thermal diffuse scattering and 
radiation losses) is responsible for a substantial 
imaginary part of the Fourier components of the 
crystal potential, typically 10% of the real part, even 
with light atoms. In such a situation the absolute 
determination of polarity and enantiomorphism is 
always possible. Multiple diffraction, in this case, is 

not an essential ingredient, but rather an unavoid- 
able feature, necessitated by the geometry of the 
diffraction process (see, for example, the paper by 
Tafto & Spence, 1982). The situation is reviewed in a 
recent book by Spence & Zuo (1992). 

In conclusion, multiple-beam diffraction cannot 
resolve the enantiomorphism problem and does not 
help in solving the polarity problem of acentric 
crystals in comparison with standard two-beam 
experiments, in which anomalous-dispersion effects 
are exploited to differentiate between Friedel pairs. 

In view of the analysis given in this paper, the 
results presented by Chang, King, Huang & Gao 
(1991) and by Hiimmer, Weckert & Bondza (1989) 
are somewhat questionable. 

This work was supported by the National Science 
Foundation, grant no. DMR-9108684. 
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Abstract 

The coherent one-phonon scattering cross section 
measured in time-of-flight (TOF) neutron diffrac- 
tometry is derived for any ratio between the sample- 
to-detector flight path and the total flight path. For 
the particular case of scattering by acoustic phonons 
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in monocrystals, the differential cross section is 
described in terms of the scattering surface in four- 
dimensional space (Qe,w), where hQe is the 
momentum transfer for elastic scattering and hw is 
the energy transfer. This cross section is required in 
calculating the thermal diffuse scattering (TDS) cor- 
rection for TOF neutron diffractometry. 
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1. Introduction 

The problem of the TDS correction of Bragg peaks 
was solved many years ago for X-ray diffraction 
(Cooper & Rouse, 1968) and for the fixed- 
wavelength method of neutron diffraction (Willis, 
1970; Cooper, 1971). The calculation of the TDS 
correction for the neutron time-of-flight (TOF) case 
is more complicated than for the fixed-wavelength 
case. 

In this paper, we consider some features of the 
differential scattering cross section that are impor- 
tant in calculating the TDS correction factor for 
TOF experiments in neutron diffraction. In a subse- 
quent paper, we shall calculate the magnitude of the 
correction itself. 

We shall show that there is one surface in (Qe,o)) 
space for each acoustic mode of vibration, where hQe 
is the momentum transfer for elastic scattering and 
hw is the energy transfer (here, h=h/27r) .  By 
crossing this surface with a plane in three- 
dimensional Qe space, normal to the scattering plane, 
we obtain a surface having different topologies for 
three regions of the quantity/3, representing the ratio 
of the sound velocity in the crystal to the velocity of 
Bragg-scattered neutrons. The limiting values, /3~ 
a n d / 3 ,  (/3~ _</3,), separating these regions are func- 
tions of s c and the Bragg angle 0B, where s c is the 
ratio between the sample-to-detector flight path and 
the total flight path. In addi t ion, /3 ,  depends on the 
orientation of the crossing plane. 

2. The differential cross section measured in TOF 
neutron diffractometry 

A neutron or X-ray diffractometer is used to 
determine the structure of condensed matter by 
measuring the differential cross section for elastic 
coherent scattering. This scattering is a function of 
the position in reciprocal space Q, which is uniquely 
determined for any diffractometer setting. However, 
inelastic scattering also exists, which is recorded in 
the detector at the same setting and the diffractom- 
eter is unable to determine the energy transfer ho) for 
this inelastic scattering. The diffractometer cannot 
localize each point in four-dimensional space (Q,o)), 
but can only integrate the contributions to the count- 
ing rate from all points in this space situated on a 
given curve, F: [Q(o)),w]. A particular point on this 
curve is Qe = [Q(0),0], which corresponds to elastic 
scattering. The shape of F depends on the diffraction 
method used. Let us find F for TOF neutron dif- 
fraction. 

2.1. Integration path & (Q,to) space 

We firstly denote the time of flight of the 
elastically scattered neutrons by Te. In the same time 

channel, the inelastically scattered neutrons are also 
counted, for which the times of flight before (Tl) and 
after (Tz) scattering fulfil the condition 

Tl + 7"2 = Te. (1) 

With the relation between the energy E; (i = 1, 2, e) 
and the time of flight Ti taken into account, (1) 
becomes 

E 2 = El~(El/Ee) , 

where 

~(El/Ee) = (L~/L 2)~[(El~Be)l~2 - L , /L]  2. (2) 

The following condition is also fulfilled: 

EeLZ/L2 <_ El < oo. 

Here, Ll and L2 are the flight paths before and after 
scattering and L = LI + L2. 

Secondly, denoting by iz, i2 the unit vectors along 
the incident and scattering directions, respectively, 
one has 

Q = k2 - kl 

= ke(El/Ee)l/2[(/t(El/Ee)i2- i,], 

where k i is the neutron wave vector corresponding to 
E; and k e is the wave number of the elastically 
scattered neutrons. This equation together with the 
equation 

hw = E 2 -  E, = El[ ~ ( E l / E e ) -  1] 

are the parametric equations (parameter El) of the 
integration curve F. This curve passes through the 
reciprocal-space point Qe, 

Qe = k~(i2 - i 1). 

2.2. Measured differential cross section 

Now we can write the counting rate of the 
neutrons scattered in the solid angle dO and in the 
time interval d Te (to which the energy interval dEe 
corresponds): 

et~ 

d N d E e = d l ' 2 d T e  f dE, qb(E,) 
E~L~IL 2 

x [A(E,,E2) d2~r/dg2dr2], (3) 

where E2 = Elgt(El/Ee). Here, q~(E1) is the incident 
flux and A(EI,E2) is a factor that includes the trans- 
mission in air and the sample and the detector 
efficiency. By definition, the differential cross section 
is 

d~r/dn = (dN/dn)[  @(Ee)A(E~,Ee)]-i. (4) 

Taking into account the relation 

(d TJdEe)(dE2/d T2) = ( L/ L2)( E2/ E~) 3/2 
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and using the notation 

F( EI,E2) = C19( E,) A ( E,,E2)/ C19( Ee)A ( Ee,Ee), 

z = E;/Ee, ~ = LE/L, 

one obtains from (3) and (4) the equation 
o :  

do'/dO = (Ee/#) f dz Z3/2~J(Z) 3/2 
( ;  _ ~:)2 

x [F(E;,E2) d20"/dg2 dE2], (5) 

where E; = Eez; E2 = EezdJ(z).  This is the differential 
cross section measured by the TOF diffractometer. 

The function 
O(Z)--~2/(Z1/2-- 1 + ~)2 

is represented in Fig. 1 for two values of ~:. It 
becomes infinite for z = (1 - 0 2 :  this discontinuity is 
an integrable one but, unfortunately, it produces a 
large rounding error in the numerical integration of 
(5). Another difficulty appears if we want to find the 
limit of do'/d/2 as s~---,0. (Most, but not all, TOF 
diffractometers operate with ~ close to zero.) Thus, 
the function 0(z) is continuous in the range 
[(1 - ~:)2, oo ] but is not uniform; this fact prohibits the 
insertion of the limit before the evaluation of the 
integral in (5). 

Both difficulties can be removed by changing the 
integration variable to w, where 

W = t i to /E  e. 

Equation (5) then becomes 

do" = z(w)[z(w) + w] 3/2 
d--~ = Ee f dw W]3/2 _ ~ { [ z ( w ) +  - ~:w} 

x F(E,,E2) dg2dE2 ' (6) 

where El = Eez(W); E2 = Ee[z(w) + w]. The function 
z(w) is obtained by numerically solving the equation 

w = z [ 0 ( z ) -  1]. 

0 
0 . 0 0  0.50 1.00 1.50 

Z 

Fig. 1. The function 0(z) for two values of so: s c = 0.5 (thick curve) 
and g = 0.05 (thin curve). 

In the range ( -  oo, oo), z(w) is continuous and has the 
following asymptotic lines: 

z(w) = - w + ~:2; z(w) = (1 - ~)2. 
w.---~ - -  oo w----~ o o  

For so---,0, the function z(w) becomes identical with 
its asymptotes. 

The cross section is 
o o  

d~r/d/2 = E e y dw[Fo(E;,E2)d2a'/dg2dE2], (7) 
- 1  

where El = Ee; E2 = Ee(1 + w) and 

Fo(EI,E2) = A(E,,E2)/A(Ee,Ee). 

Hence, provided that the flight path from the sample 
to the detector is much smaller than the total flight 
path, the TOF diffractometer integrates the inelastic 
processes, for a given energy of the incident 
neutrons, in the same way as the angular-dispersive 
diffractometer. 

3. The TD S differential cross section 

Let us now apply (5) to the scattering by acoustic 
phonons in monocrystals. Following Marshall & 
Lovesey (1971), the one-phonon double-differential 
cross section is 

d 2o-/d~2 dEE = [(27r)3/Vc](F20/2Mc)(k2/k,) 
3 

× ~ 2 [ [ Q "  o)(q)lZ/wj(q)] 
j = l q  

× Z {n[wj(q)]+ 1/2+e/2} 
e = ± l  

× 6[w+ ewj (q)]~(Q-2"rrH-q) ,  (8) 

where vc and Mc are the unit-cell volume and mass, 
FQ is the structure factor, H is a Bragg vector, %(q) 
and o~j(q) are the polarization vector and frequency 
of the mode (j,q), respectively, q being the phonon 
wave vector and j the branch of the dispersion 
relation, n(w) is the Bose factor and e is +1 for 
phonon creation and - 1 for phonon annihilation. 

Firstly, we perform the summation over q in (8) 
and then the integral over E; (in practice over k; as 
dE; = h2rn2 ]k;dk], m,, being the neutron mass). One 
obtains 

d o-/&Q = (V/vo)F2Q(h/2Mc)(L/L2) 
3 

x Z Z Z F(kl,,/ke)2[~°(k;,,/ke)] 2 
j = ;  e=- - - - -1  n 

× IO." ~j(q.)12/(oJ(q.) 
× {n[wj(q,,)] + (e + 1)/2} 

× l1 + [(p(k],,/ke)] 3/2 

+ (m,,e/hk;,~)[i] + (p(k,,,/k~)(L;/L2)i2] 

× gradq ( o . ( q . ) [ - ;  (9) 
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In this expression, V is the sample volume and k~  is 
the nth root of the following equation with the 
variable kl, 

where 

and 

k21199(kl/ke) - 1 ] + ( 2 m , , / h ) e % ( q ) = O ,  (10) 

q = Q - 2rrH = k 2 - -  k l  - -  2rrH 

k2 = k l99(k l /ke) .  (1 1) 

The function 99 in (9), (10) and (11) is 0, as defined in 
(2), but with E replaced by t~2k2/2m,,: 

99(kl/ke) = ~ 2 / ( k l / k e -  1 + ()2. (12) 

Let us now introduce some conventional approxi- 
mations to simplify (9). 

(a) We are interested in small q so that Q = 27rH. 
The energy transfer is also small; then, kl - -  ke ,  q9 ~- 1 
and F =  1. For small q, the dispersion relation is 
w:(q) = c:q, cj being the sound velocity in the crystal, 
a quantity dependent on the direction of propagation 
of the acoustic wave and on its direction of 
polarization. 

(b) We use the two-velocity approximation (Willis, 
1969), stating that all the acoustic waves are pure 
longitudinal and pure transverse, with the phase 
velocities, cl (longitudinal) and c2 (transverse), 
independent of direction. As a consequence, 
grad e % ( q ) =  cj(q/q);  on the other hand, the sum 
over j  = 1,3 in (9) reduces to a sum of two terms, the 
first being proportional to ]Q. ¢rl(q)] 2 -- 47raH2cos2 p 
and the second to ]Q'~r,(q)]2+lQ'~r3q)12- - 
47r2/-/2sin2 p, where p is the angle between Q and q. 
Furthermore, cos2p and sin2p are replaced by their 
average values, 1/3 and 2/3, respectively. 

(c) The high-temperature approximation is also 
invoked, so that h w < < K s T ,  where K8 is 
Boltzmann's constant. In this case, 

n(o)) = [exp ( t t w / K B T )  - 1 ] -  1 ._. g s T / h w  > > 1 

and we can neglect (e+ 1)/2. 
After these approximations are made, (9) becomes 

2 

d c r / d Y 2 = ( Z r r 2 v l r a n l H R K ~ T ) / ( 3 v c M c )  y" ( j / c :  2) 
j= l  

x Z Z {q~ll +/3je[~:il +(1 - ~:)i2]~,,1} -~, 
n 

(13) 

where /3: denotes the ratio between the sound 
velocity and the neutron velocity corresponding to 
the Bragg wavelength: 

/3j = e jm, f l~kB = cj/vB. 

fl, is the unit wave vector of the phonon q~ and kB is 
the wave number of Bragg-scattered neutrons. 

4. The scattering surface 

Equation (10) represents the s ca t t e r i ng  sur face .  Let 
us transform (10) in accordance with the approxi- 
mations used in the previous section. 

We shall replace k~ and k~ by the dimensionless 
variables x and y: 

x = (k ,  - ke)/k~; y = (ke - k ~ ) / k s .  

The variation over y refers to a TOF scan in the 
neighbourhood of the Bragg peak, while the variable 
x describes the energy transfer at scattering. For 
small energy transfers we have, from (12), 

99 - 1 --- - 2 x / ~  

and (1 0) becomes 

q = k ~ e ( x / ( / 3 j ) .  (14) 

If the crystal is oriented with the Bragg vector H in 
the horizontal plane, making an angle of ~-/2 + 0B 
with the incident beam, the mean direction of the 
diffracted beam is also horizontal and has the unit 
vector i 2B .  Any scattering direction ]2 c a n  be defined 
with respect to i28 by the horizontal and vertical 
angular divergences 3, and &, respectively. Let us 
suppose that the surface of the position-sensitive 
detector is perpendicular to i28. If the horizontal and 
vertical coordinates are denoted by Ue and Ve, 
respectively, on this surface, 3, and 8 are 

3, = 2 0 - 2 8B = (U~ - Us) /L2;  6 = (l ie - VB)/L2.  

The dimensionless quantities (y, 3,, &) uniquely define 
the vector Q~. Thus, choosing an orthogonal coordi- 
nate system (I,J,K) with 

I = 01 +i2B)/(lil +i2.l) ,  J = H / H ,  K = I x J,  

we have 

Q~ = 2~-H + k . [  - 3, sin 0BI 

+ (2y sin 0B + 3' cos 08)J + &K]. 

In the same manner, we can write an expression 
for the phonon wave vector q as 

q = k8 {[ - ( x /~ )  cos 0B - ",/sin 08]I 

+ [2(y + x - x / 2 ~ )  sin 0B 

+ 3, cos 0B]J + 3K}. (15) 

We note that q ( x  = 0) = Q e -  27rH = qe" 
By equalizing q2 from (14) and (15), we now 

obtain 

( f 1 2 u 2 -  1 ) ( x / ~ ) 2 -  2 f 1 2 M ( x / ~ ) +  / 3 2 N 2 = O ,  (16) 

where 

M = 2 ( 'q -  cos 20~)y -  (3,  (17) 

N2 2 2 = qe/kB = 4y 2 sin 40B+ (3,+y sin 20~) 2 + 32 (18) 
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r / =  1-2sCsin20B; (=sCsin20B; P2='F]2q-~'2. 
(19a ,b ,c )  

The solution of (16) is 

(X/~)I, 2 =/3( /3M + A)1/2/(/32/} 2 -  1) 

with 

(20) 

A - - / 3 2 M 2 -  (/32p2- 1)N 2. (21) 

Equation (16), obtained from the general equation 
(10), under a set of approximations valid for TDS 
from low-frequency acoustic phonons, is the scat- 
tering surface 'seen' by the TOF diffractometer. It is 
a quadratic equation between four variables, y, y, 6 
and x, and it represents a hyperboloid of two sheets 
or an ellipsoid in four-dimensional space (Qe, w). It 
is not difficult to understand the nature of this 
surface. In a given time channel (Te, U~; V~), which 
uniquely determines the point Qe, the diffractometer 
integrates the contribution to the counting rate from 
all points of the space (Q, w) situated on a curve F 
passing through Qe. If the scattering is coherent and 
inelastic, the cross section is defined only for the 
points situated on the dispersion surface (DS), a cone 
of two sheets for every low-energy acoustic mode. 
These points have Q different from Qe but the 
contributions to the counting rate are 'seen' as 
coming from Qe. The intersection points F(Qe)-DS 
are then projected on a line parallel to the hw axis, 
which passes through Qe. The scattering surface (16) 
is obtained from the dispersion surface by this com- 
plicated point-by-point projection. In the following, 
this will be identified as 8S4 (scattering surface in 
four-dimensional space). 

Let us cross SS4 with a plane of the space Qe. A 
surface in three-dimensional space ($83) results, one 
dimension being x, the other two being independent 
parameters in this crossing plane. By using (15), one 
obtains a surface in the space of the phonon wave 
vectors q. This is just the scattering surface described 
in the papers of Willis (1969, 1970, 1986). By 
crossing SS4 with a family of parallel planes in Qe, 
one obtains a family of SS3s with the same topology 
for all members. However, different families of 
planes produce families of SS3s with different 
topologies. Willis (1986), analysing the SS3 at y = 20 

- 208 = constant, found three regions of the param- 
eter/3 in which the SS3s have different topologies. 
Popa (1987), making an analysis at y = (TB - Te ) /T8  
= constant, also found three regions for/3, different 
from those of Willis, which become two regions in 
the limit so:--,0. There is no contradiction because 
two different cross sections of the unique SS4 were 
analysed. 

Let us analyse the cross section in the general case. 
We shall consider the plane P in the space Qe to be 
perpendicular to the plane ( y , y )  and at a distance r 

from the origin. The normal to P is at an angle 2' to 
the y axis (see Fig. 2). Furthermore, let us denote a 
variable t along the line of intersection of the planes 
P and ( y , y ) .  By replacement of the variables y and y 
on P by t, the discriminant A is written as a quad- 
ratic form in the variables t and 6 with r and 2" as 
parameters. We look for the regions in plane P 
where A ___ 0 and for this we need the roots t~, t2 of 
the equation d( t ,~3 )=  0, if they exist, and the quan- 
tity/z 2 defined by 

p2 = (r/2 sin 2 2" + 4 cos 2 2" sin 2 08 cos 20B 

- r/sin 22' sin 208) 

x (sin 2 X + 4 cos 2 2" sin 2 08 - sin 22" sin 208)- 

(22) 

Taking account of the inequality 

/}2 ~_~ 1/,2, 

which is true for any s c, 2", 08, we can now find the 
topology of the SS3s in the space (x, t, ~). The 
topology of SS3 in the space q, which corresponds to 
the plane P, will evidently be the same. 

There are three distinct regions of/3: 
(i) If 0 </3 < 1/u,  solutions (x/sO)l.2 of (16) exist in 

all points of the plane P, one positive, the other 
negative. As q in (14) must be positive, the positive 
solution corresponds to phonon creation and the 
negative to phonon annihilation [e = sign (x/sO)]. SS3 
is a hyperboloid of two sheets. 

(ii) If 1/u  </3 < 1//z, SS3 is also a hyperboloid of 
two sheets but the range t~ < t < tz exists in which 
the TDS is forbidden. At the left and right of this 
range, the scattering is with phonon creation only or 
with phonon annihilation only. 

(iii) If 1//z </3 < ~ ,  SS3 is an ellipsoid. TDS is 
allowed in the range tt < t < t2 but at the left and 
fight of this range TDS is forbidden. 

P 

P 

9' 

Fig. 2. The scanning plane P(t, 6). Reciprocal space is scanned at 
20 - 20t~ = r if,v = 0 and at (7/'8 - T)/TB = r if g = ~-/2. 
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The forbidden ranges in both (ii) and (iii) have 
been observed recently in experiments on barium 
fluoride by Carlile, Keen, Wilson & Willis (1992). 

Special attention must be paid to the cases where 
/3 = 1/u and/3  = 1//z. When /3 = 1/u, (16) has only 
one solution: 

x/s ~ = N2/2M. 

SS3 is a hyperboloid of two sheets, as in (i) and (ii), 
but with one asymptotic plane parallel to the x axis. 
If/3 = 1//z, SS3 is a paraboloid. 

From this analysis, we note that there are two 
critical values of/3,  delimiting the regions with dif- 
ferent topologies for SS3: 

,8,, = 1/v and /3,, = 1//x. (23) 

The first value depends only on # and 0B and, 
moreover, it becomes unity when # - , 0 ;  however, the 
second value depends also on the orientation of the 
plane of scanning P. 

There are two cases of particular interest: 
(a) For X = 0, the variable t is just y, the space Qe 

is scanned at a constant offset angle, T = r, and flu 
= 1/cos 08 =/30. This result was discussed by Willis 
(1986). 

(b) For X = zr/2, the variable t is - T, the space Qe 
is scanned at a constant TOF y = r and 

/3,, = 1/'q =/3,7" 

If # - ,  0, r/---, u--- 1 and /3,7-,/3~--, 1 and there 
remain only two regions of SS3 with different 
topologies for a given y, as in the angular-dispersive 
method. This behaviour is easy to understand 
because the integration of inelastic processes in TOF, 
for a given incident wavelength, becomes similar 
to that for angular-dispersive neutron diffraction if 
# ~ 0 .  This result was reported by Popa (1987). 

Fig. 3 shows the cross sections, 6 = 0, of the two 
kinds of SS3 at y = r (thin curve) and y = r (thick 
curve) for the same value of r; the vertical axis is x/#  
and the horizontal axis is y or y. The same cross 
sections but in the space (qx/k~, qy/kB) are shown in 
Fig. 4. The instrumental parameters used for these 
figures were # = 0.3 and 0B = 60 °, giving/3~ = 1.644, 
/3,7 = 1.818 and/3o = 2. For/3 we used the value 1.9. 
For the cross section y = r, the value /3 = 1.9 lies 
within region (ii), whereas it is in region (iii) for the 
cross section y = r. 

5. Concluding remarks 

Once the solutions (x/#)n of (16) are found, it is 
possible to calculate, using (14), the vectors q, that 
appear in (13) and consequently to perform in this 
last expression the summation over n and e, keeping 
in mind that e = sign (x/#). One obtains two different 

expressions for the two regions of/3 separated by/3~: 

dtr/dO(Q~) = (47r2/3)(V/vc) 

x (IFHI2mK~T/MJ4) 
2 

x Y. (j/c})Sj(Qe), (24) 
j = l  

where 

f l / N  2 for /3j</3~ (25) 
Sj(Qe) = ~jlMI/N2A/,2 for flj>/3~. 

For/3 </3 ~, S is defined at all points of the space Qe, 
but, for /3 >/3~, S is defined only at the points in 
which A_>0; these points were identified in the 
previous section. The function S has an infinite 
discontinuity at the point Qe = 0 if/3 </3~ and at the 
edges of the allowed regions if 13 >flu, but these 
discontinuities are integrable. 

The main results reported in this paper can be 
summarized as follows: (a) We have derived, for any 
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value of the parameter ~ (i.e. the ratio of the sample- 
to-detector flight path and the total flight path), the 
differential cross section measured in TOF neutron 
diffractometry. (b) For coherent inelastic scattering, 
this cross section is fully described by the scattering 
surface in the four-dimensional space (Qe, to). (c) For 
scattering by low-frequency acoustic phonons, this 
surface is defined at every point of the space Qe if 
/3 </3~ but it is not defined in some regions of this 
space if/3 >/3~. (d) Forbidden ranges exist in both 
incident wavelengths and scattering angles if/3~ </3 
</3~,; in these ranges, the scattering is allowed if 
/3 > fl~. (e) The value of fl~ depends on the orienta- 
tion of the scanning plane in the space Qe. For the 
particular case of scanning at constant offset from 
the Bragg scattering angle, fl~, becomes 1/cos 0~, as 
reported by Willis (1986). (f) Finally, we have found 
an analytical expression for the differential cross 
section of scattering by low-energy acoustic phonons. 

This will be used in a further paper to calculate the 
TDS correction of the Bragg peaks measured by the 
TOF diffractometer. 

The authors are deeply indebted to Dr C. J. Carlile 
of the Rutherford Appleton Laboratory, England, 
for discussions on the contents of this paper. 
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Abstract 
New formulas for the full widths at half-maxima 
(FWHMs) of powder Bragg intensity profiles are 
deduced in reciprocal space, using the concept for 
the calculation of the peak width introduced for 
single-crystal diffractometry by Rossmanith [Acta 
Cryst. (1992), A48, 596-610]. In paper I, a basic 
formula for strain-free and prefer.red-orientation-free 
powders is deduced. Furthermore, it is shown that 
comparison of experimental widths with theoretical 
FWHMs calculated with the new expression results 
in physically significant values for the particle size in 
the powder. In a forthcoming paper II, the effect of 
strain on the FWHM will be analysed. 

Introduction 
Profile analysis of powder diffraction diagrams 
requires knowledge of the height, width and distribu- 
tion function (i.e. Gauss, Lorentz, pseudo-Voigt etc.) 
of the intensity profile. 
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Expressions for the calculation of the resolution 
functions of N-crystal powder spectrometers are 
given by, for example, Sabine (1987) and Wroblewski 
(1991). The formulas given by these authors are 
difficult to handle for two reasons. First, most of the 
transmission and reflection probability distributions 
involved in the expressions are not known exactly in 
routine powder diffraction experiments. Second, 
evaluation of these expressions requires time- 
consuming computations of integrals, even if 
approximations (for example pseudo-Voigt) for the 
distribution functions are used. 

The widths of the Bragg intensity profiles are, 
therefore, usually calculated using the simplified 
version of the formula given by Caglioti, Paoletti & 
Ricci (1958): 

A 2 0 2  - -  U tan 2 0 + V tan 0 + W. (1 a) 

In Rietveld analysis (Rietveld, 1969), the physically 
meaningless half-width parameters U, V and W are 
determined by least-squares fitting of calculated to 
measured FWHMs. 
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